Notation3: Knowledge Graph Language for the Semantic Web

Notation3 (N3) is a language for natively building and reasoning over semantic Knowledge Graphs. Since N3 is a superset of the Resource Description Framework (RDF), it directly operates in the realm of semantic Knowledge Graphs. Hence, there is no impedance mismatch between N3 and Knowledge Graphs, as is the case with imperative programming languages such as JavaScript/TypeScript, Java, or Python.

Building semantic Knowledge Graphs. N3 provides a concise syntax and constructs such as graph terms, which allow attaching metadata to statements (e.g., provenance); and lists, as first-class citizens to describe ordered collections of things.

Machine reasoning on semantic Knowledge Graphs. N3 supports the creation of N3 rules, loosely comparable to If-Then statements, which infer new symbolic knowledge from semantic Knowledge Graphs. This supports a wide range of scenarios, including simply expanding the available knowledge, mapping between different vocabularies and transforming instance data, consistency checking, and implementing decision support systems.

Cross-platform, open-source standard. N3 is an open W3C specification with freely available, open-source, industrial-strength tooling for JavaScript / TypeScript, Java, Python, Prolog, and using command-line tools.


N3 editors

N3 editors provide syntax checking, linting, and machine reasoning (using N3 reasoners):

N3 reasoners

Other resources


An N3 document represents an N3 graph in a textual form, which is a series of N3 statements. These are written as triples consisting of a subject, predicate, and object resource. An N3 resource can be represented by any N3 term: an RDF IRI, literal or blank node; or an N3 graph term, list, logical implication, variable or N3 builtin. Comments are indicated using a separate '#' and continue until the end of the line.


Simple triples

The simplest N3 statement or triple is a sequence of a subject, predicate, and object resource, separated by whitespace and terminated by '.' after each triple.

In the example below, three N3 triples highlight the enmity between Spiderman and the Green Goblin and lists their human-readable names:

For now, we will asssume that a resource is represented either by an IRI or a literal. In general, one uses an IRI to identify an identifiable entity such as a person, place, or thing — a literal is used for a textual or numerical (i.e., datatype) value, such as name, date, height, and so on.

There is no inherent order for N3 or RDF triples. The same is true for the relational database model, i.e., relational tuples or rows do not have an inherent order. Hence, it is a mistake to associate meaning with the order of statements in an N3 document (e.g., assuming that a first listed telephone for Spiderman is their landline, and the second one their mobile number).

Predicate/object lists

As shown in the above example, the same subject (here, Spiderman) will often be described by several N3 statements. To make these N3 statements less cumbersome to write, one can put a semicolon (";") at the end of an N3 statement to describe the same subject in the subsequent statement:

Similarly, a predicate (e.g., name) can often list multiple objects for the same subject (e.g., Spiderman). This can be written by listing the object values separated by a ',':


An N3 resource in an N3 statement can be represented by any N3 term: an RDF IRI, literal or blank node; or an N3 graph term, list, logical implication, variable or N3 builtin.


An IRI is used to represent an identifiable entity — such as a person, place, or thing. Until now, we have been writing absolute IRIs (RFC3987) (e.g.,, which include both the namespace (e.g., and the local name (e.g., Spiderman).

It is often much easier to write an IRI as a prefixed name — e.g., ex:Spiderman, which includes a prefix label (e.g., ex) as a shorthand for the namespace, and the local name (e.g., Spiderman), separated by a colon (":"). The @prefix directives associate the prefix label with a namespace IRI. A prefixed name is turned into an absolute IRI by concatenating the namespace IRI with the local name. The following example is equivalent to the original example:

N3 also supports case-insensitive PREFIX and BASE directives, as does Turtle, to align the syntax with SPARQL (see grammar). These do not have a trailing '.'.

To further simplify prefixed names, one can leave the prefix label empty (e.g., for an often-used namespace):

One can also write relative IRI references, e.g., <#Spiderman>. A relative IRI reference is resolved, i.e., turned into an absolute IRI, by concatenating the base IRI with the local name (e.g., Spiderman). A base IRI is defined using the @base directive. For instance, the following is equivalent to the prior example:

We recommend listing @prefix / PREFIX and @base / BASE declarations at the top of an N3 document. This is not mandatory, however, and they can technically be put anywhere before the prefixed name or relative IRI that relies on the declaration. Subsequent @prefix / PREFIX directives may "re-map" the same prefix label to another namespace IRI.
Prefixed names are a superset of XML QNames. They differ in that the local name may include:
  • leading digits, e.g. leg:3032571 or isbn13:9780136019701
  • non leading colons, e.g. og:video:height
  • reserved character escape sequences, e.g. wgs:lat\-long

IRI property lists

In many cases, an IRI occurs only once as an object, and is then further described as a subject in other statements (e.g., see a prior example). The example below illustrates how this may result in difficult-to-read code: to find descriptions of IRI objects such as tobey-maguire or willem-dafoe, one must scan the full N3 graph, as they are only described near the end.

Using the IRI property list syntax, descriptions of these object IRIs can be directly "embedded" within the object position:

Using basic statements: Using IRI property lists:

IRI property lists build on the predicate object list syntax to group statements about IRIs. One can use objects lists in this syntax as well.

See also the blank node property list syntax.


Literals are used to represent a textual or numerical (i.e., datatype) value, such as name, date, height, and so on. Numbers (integers, decimals, and doubles) are simply represented using their numerical value, and booleans are represented using true or false:

For details on numerical syntaxes (e.g., decimals, doubles), we refer to the RDF 1.1: Turtle (Section 2.5.2) specification.

Other literals, such as strings, but also dates, binary, octal or hex code, XML or JSON code, or other types of numbers (e.g., shorts), need to be written as datatyped literals. These are represented as a string, followed by the `^^` symbol and the corresponding datatype IRI. (`xsd:string` is the datatype IRI for strings; this is the default and can be omitted). For instance:

The literal's lexical form will include the characters between the delimiter quotes (e.g., 2001-08-10).

The language of the string literal can be indicated using the @ symbol and the corresponding language tag (as defined in BCP47 — find the registry in LNG-TAG). For instance:

The reading direction can be described together with the language BCP47, using the i18n namespace:

If no datatype IRI or language tag is given, the datatype xsd:string will be assumed. In case a language tag is given, the datatype rdf:langString will be assumed. Note that it is not possible to specify both a datatype IRI and a language tag.
Integers, decimals, doubles, and booleans may also be written as string literals with the appropriate datatype IRI (e.g., "8"^^xsd:integer or "true"^^xsd:boolean).
There are also other mechanisms for describing the language tag and base direction of RDF literals.

In case the the string literal itself contains the string delimiter (e.g., double quotes), or includes newlines, other string delimiters can be used, i.e., single quotes or compound delimiters """ or '''. Alternatively, one can also use a '\' for escaping the delimiter each time it occurs within a string literal. For instance:

The escape symbol '\' (U+005C) may only appear in a string literal as part of an escape sequence. Other restrictions within string literals depend on the delimiter:

  • Literals delimited by ' may not contain the characters ', LF (U+000A), or CR (U+000D).
  • Literals delimited by " may not contain the characters ", LF, or CR.
  • Literals delimited by ''' may not contain the sequence of characters '''.
  • Literals delimited by """ may not contain the sequence of characters """.

Blank nodes

When describing resources in RDF, you can run into the following situations:

  • It is not worth minting a new IRI for the resource, as it is unlikely that other N3 graphs will refer to it.
  • There likely already exists an IRI for the resource, and we don't want to do an extensive search to find out what it is.

Instead, you can use blank nodes to talk about resources. They are existential variables; that is, they state the existence of a thing without identifying it. Blank nodes can be represented in several ways, as described below. For details, please refer to RDF11-CONCEPTS.

Blank node identifiers

A blank node can be represented by a blank node identifier, which is unique within the N3 graph, expressed as _:someLabel. Then, we use this identifier within our N3 graph to describe the corresponding resource, same as with an IRI.

For instance, this example shows that the Mona Lisa has an unidentified tree in its background. We don't want to concretely identify this tree, but we do want to describe it — such as the painting it is in, and the type of tree:

In this example, we minted a blank node identifier _:someTree to represent the resource that we want to describe. Note that this identifier is only usable within our local N3 graph — if you want other N3 graphs to describe it, you should represent it using an IRI.

Blank node property lists

Using a blank node identifier requires introducing a new identifier for each blank node. In many cases, however, a blank node occurs only once as an object, and is then further described as a subject in other statements, such as in the prior example. In those cases, a more convenient syntax can be used.

The example below shows a more elaborate example: identifiers _:a and _:t are used as object in only one statement, and are then described as subject in other statements. Using the blank node property list syntax, these cases can be represented as follows:

Using blank node identifiers: Using blank node property lists:
See also the IRI property list syntax.

As mentioned, this syntax is useful for cases where a blank node occurs only once as an object. In case the blank node occurs several times as an object, such as describing multiple people with the same address, one should use blank node identifiers. For instance:

We can still use the blank node property list syntax for describing the town, as this blank node still only occurs once as object.

Blank node use cases

Below, we summarize typical use cases where blank nodes are used to describe resources.

Unknown resources: we might want to state that the Mona Lisa painting has in its background an unidentified tree, which we know to be a cypress tree. We could mint an IRI such as "mona-lisa-cypress-tree", but we feel that would be redundant — we simply want to describe the tree, such as the painting it is in, and the type of tree. We're not particularly interested in allowing other N3 graphs to refer to the tree. Moreover, there may already exist an IRI for that particular tree, and we don't want to mint another IRI to refer to the same tree (nor do we want to lookup this existing IRI).

Composite information: when describing composite pieces of information, such as street addresses, telephone numbers and dates, it is often unlikely that anyone outside this N3 graph would need to refer to this address or its pieces. Hence, it would be redundant to mint an IRI just for the purpose of structuring this information. Instead, one can use a blank node to connect the "composed" pieces of information, e.g., the street address, to its composite values, e.g., street name, number, and city, as shown in this example.

N-ary relations: blank nodes are a convenient way to represent n-ary relations in N3.


We often need to describe ordered collections of things, e.g., a book written by several authors, listing the students in a course, or the software modules within a package. N3 provides a succinct list syntax to represent ordered collections of resources enclosed by ( ). The contained resources are called members.

For instance:

This states that the value of the author property is the list resource.

To an extent, an N3 list is equivalent to the more verbose RDF Collection vocabulary.

In N3, lists may occur as subjects, predicates or objects in a statement. For instance:

Or even:

Graph terms

It is often useful to attach metadata to groups of triples — to give the provenance, context, or version of the information, our opinion on the matter, and so on. We can use graph terms to quote RDF graphs, and then describe the graph term using N3 statements. For instance:

Essentially, a graph term represents the occurrence of an RDF graph — i.e., a quoting or citing of the graph. Importantly, a graph term does not assert the contents of the RDF graph as being true (e.g., :cervantes dc:wrote :moby_dick). In fact, the graph term is interpreted as a resource on its own .

As with lists, graph terms can be used in any position in an N3 statement.

As they represent a quoting of RDF graphs, graph terms are not "referentially transparent". For instance:

This N3 statement states that Lois Lane believes that Superman can fly. Even if it is known that :Superman is the same as :ClarkKent, one cannot infer from this that Lois Lane believes that :ClarkKent can fly. Indeed, this is an accurate depiction of Lois Lane's statement at the time — as she did not know that Superman is Clark Kent at that point, she would certainly not be saying that Clark Kent can fly.

N3 rules

N3 supports declarative programming by allowing to make statements about the world, including logical implications, or N3 rules, which can be loosely compared to If-Then statements. Based on the N3 semantics, inferences can be drawn from these statements. An N3 reasoner can draw such inferences automatically, to support problem solving, decision making, or simply enriching your Knowledge Graph.

For instance, the following is an N3 rule:

This is a logical construct, such as a conjunction (AND) and disjunction (OR). Stating such a logical implication means that, in case the rule premise is true (it is raining), the rule conclusion must be true as well (it is cloudy). If this is not the case — raining does not imply that it is cloudy — the implication would be false. However, this is not possible, since all statements in N3 (and RDF) are true by default.

Hence, when the premise holds, then we can infer the conclusion. This is also referred to as firing the rule. For the example above, if we additionally state :weather a :Raining, then we can safely infer :weater a :Cloudy:

An N3 rule is actually an N3 statement, where the subject and object constitute graph terms, and the predicate is log:implies, with symbol => as syntactic sugar.


N3 rules are more useful when they include variables. For instance, the following includes a universal variable (prefixed by ?):

This states that the N3 rule is true for each value of variable ?x. So, when the premise is true for a particular value for ?x (being a super hero), then the conclusion must be true for that value as well (being imaginary). For the example above, the premise is true for value :spiderman, meaning we can infer the conclusion for that value, i.e., :spiderman a :Imaginary.

Compared to SPARQL, the triples in the rule premise (e.g., ?x a :SuperHero) can be seen as triple patterns. In order to fire the rule, these triple patterns are matched to concrete triples in the N3 document. If a match is successful, concrete resources from the matching triple (e.g., :spiderman) are bound to the triple pattern's variables (e.g., ?x). These bound variable values are then used in the inferred conclusion (e.g., :spiderman a :Imaginary).

Rule chaining

N3 rules can be "chained": a rule can depend on the results of other rules. For example:

The third N3 rule relies on the rule conclusion (:locomotion) of the first two rules: if one of those rules fire, i.e., inferring a flying locomotion for a resource, then the third rule would fire as well, i.e., inferring that the resource would be a suitable observer for a street with heavy traffic. This allows for a modularization of N3 code: the first two rules separately decide when something supports a flying locomotion; the third rule determines what the general effects of flying locomotion are.

Variable names only have to be unique within a rule, and not across rules. For instance, in the prior example, we simply could have named every variable ?x. As with general coding practices, it is typically a good idea to give variables a meaningful name.

An N3 reasoner, which can draw inferences from N3 rules, can operate in forward chaining, backward chaining, or some hybrid mode. An N3 rule can also indicate which mode should be used, by using the appropriate predicate. Up until now, we have been using =>, which is syntactic sugar for log:implies and directs the reasoner to operate in forward chaining mode. The <= predicate, which is syntactic sugar for log:impliedBy, indicates a backward chaining mode.

For instance, the following is equivalent to the prior example and combines forward and backward chaining:

In a nutshell, forward reasoning presents a bottom-up approach: starting from a set of initial and inferred statements, a reasoner will fire any N3 rule where the premise holds, each time adding the inferences to the set, until no more N3 rules can be fired. Backward chaining is a top-down approach: given a query, such as ?x :locomotion :flying, the reasoner will search for any rules with conclusions that may satisfy the query (e.g., first and second rule). Then, it will check whether the premises of those rules hold, which may, in itself, require searching for rules with matching conclusions. Regarding general expressivity, these two reasoning modes can be considered equivalent. A detailed discussion of these two reasoning modes, their subtle differences and impacts on performance, is beyond the scope of this primer.

N3 builtins

An N3 builtin is used within a N3 rule to implement an arbitrary operation on an N3 resource or even an entire N3 document. Builtins include mathematic, string, time and cryptography operators, operations on lists and graphs, and logical operations in general.

You can find a list of builtins here: N3 Builtin Functions.

Below, we give a general overview of the different types of builtins.

Simple Builtins

As a simple example, the rule below uses the math:quotient builtin to calculate a person's height in meters:

An N3 builtin is used as the predicate in an N3 builtin statement, where the subject and object act as input or output arguments. In the example above, the second rule triple constitutes a builtin statement: the subject is the input, as math:quotient calculates the quotient of the subject list members (i.e., the person's height in cm and 100); the object constitutes the output, as the result is then bound to the object variable ?m.

Builtins with Multiple Results

N3 builtins can generate multiple results. Below, we use the list:iterate builtin to iterate over list members, and subsequently constructs a string for each element:

The list:iterate builtin iterates over all elements in the subject list (?finalists). For each element, it binds its index, and the element itself, to the variables in the object list (?i and ?finalist, respectively). Hence, the list:iterate builtin generates multiple sets of bindings for the ?i and ?finalist variables:
( ?i = 1, ?finalist = :flash )
( ?i = 2, ?finalist = :superman )
( ?i = 3, ?finalist = :spiderman )

For each set of bindings, the string:concatenation builtin concatenates the resources in the subject list, and binds the result to the object variable (?entry). This will lead to the following object values: "1. :flash" , "2. :superman" , and "3. :spiderman"

A builtin statement can be seen as a triple pattern that, for each builtin result, yields one or more "matching" triples depending on the builtin. For the example above:
( :flash :superman :spiderman ) list:iterate ( 1 :flash ) .
( :flash :superman :spiderman ) list:iterate ( 2 :superman ) .
( :flash :superman :spiderman ) list:iterate ( 3 :spiderman ) .

As with a SPARQL query, for each "matching triple", a join is attempted with the remaining triples in the rule premise. Hence, for each matching triple, the string:concatenation builtin statement is evaluated. Finally, for each consistent set of variable bindings, the rule conclusion is instantiated and inferred.

Scoped Negation as Failure (SNAF)

N3 builtins can also operate on a local graph term or even an entire N3 document. The log:collectAllIn, log:forAllIn, and log:notIncludes builtins are logical operators that support a negation-as-failure scoped on the builtin statement object: the object can be a graph term or a blank node, in which case the current document is the scope. For instance, the rule below uses log:collectAllIn to collect all of spiderman's defeated villains found in the current document:

The log:collectAllIn builtin accepts as subject a list that includes:

The where clause is evaluated on the given scope, in this case, the current N3 document; all potential results beyond this scope are considered false (SNAF). This leads to the following result:
    :spiderman :defeatedEnemies ( :green-goblin :doctor-octopus )

The example below uses log:forAllIn to determine whether a super-hero's identity is safe:

The log:forAllIn builtin accepts as subject a list with two clauses of a logical implication. If, for all cases where the first clause holds, the second clause holds as well, then the logical implication is true. In this example, the implication is true when, for each person who knows the identity of spiderman, this person can keep a secret. In this case the rule will fire, as both mary-jane-watson and aunt-may can keep secrets.

In the two examples above, the blank node object _:t indicates the current N3 document as scope. Alternatively, a graph term can be used as the scope as well. This is illustrated in the log:notIncludes example below.

The log:notIncludes builtin checks whether the given scope does not include a given clause. The example below uses a graph term as scope, instead of the current N3 document, as was the case for the prior two examples. The rule finds any of spiderman's enemies who have not been defeated, at least, as reported by the Daily Bugle:

For each of spiderman's enemies (?enemy), the rule checks whether the graph term ?graph, as reported by the :daily_bugle, does not include any statement where the enemy has been defeated. If so, we infer that this enemy is undefeated, in this case, :sandman.

The counterpart of log:notIncludes is log:includes, which checks whether the given object scope includes a given clause.

Access Online Knowledge

To dynamically retrieve online knowledge within an N3 rule, log:semantics and log:conclusion builtins allow pulling in, parsing, and reasoning over logical expressions from online sources.

In the rule below, the log:semantics builtin retrieves an online source and subsequently parses it as a graph term:

Subsequently, log:collectAllIn is used to collect all persons found within the online source.

The log:conclusion builtin allows generating the closure of a given graph term, i.e., extending the graph with all applicable rule inferences. This includes graph terms retrieved and parsed from online sources. For example:

Instead of simply printing the inferences, one could, e.g., use the log:forAllIn builtin to check whether all persons listed in the online source are indeed inferred to be animals as well.

Resource paths

Similar to SPARQL property paths, N3 resource paths concisely express paths between resources, when intermediary resources on the path are not relevant. In practice, resource paths are most useful in N3 rules.

A resource path starts from a subject resource, followed by one or more predicates; each predicate is separated by a directional indicator to follow the predicate either forward (!) or in reverse (^). For example, the following example describes the city of Joe's mother's office's address:

In this example, the intermediary resources — Joe's mother, her office, and its address — are not described or referenced further, so the more concise resource path syntax can be used.

The expansion of this shorthand syntax uses blank nodes to express the path between the two resources. The example above is equivalent to the following (using blank node identifiers for clarity):

In other words, each predicate in resource path is expanded into a statement, with as subject either the starting resource, or prior blank node object; and as object a newly minted blank node.

You can also get this expansion by opening the original example in the editor and selecting "closure" instead of "derivations" under the Execute button.

Relations can also be followed in reverse using the reverse (^) indicator. The following example, starting from joe, follows the hasMother predicate to Joe's mother, and then follows the hasMother predicate in reverse (thus pointing to someone who has the same mother):

This could equally well be represented by the more verbose:

In SPARQL, a property path is used in the predicate position to describe a string of relationships between a subject and an object resource. In contrast, an N3 resource path is most often used in the subject or object position. Using a resource path in the predicate position, although technically allowed, is often a mistake. For instance, the following N3 resource path:
    :joe :hasAddress!:hasCity "Metropolis" .
Would lead to the following expansion:
    :joe _:bn_1 "Metropolis" .
    :hasAddress :hasCity _:bn_1 .
Which is likely not the intention of the author.

Finally, the <- syntax inverts a single property in an N3 statement, resulting in an inverted property. For example, the following represents `:joe :hasMother :mary`:

Design patterns

In this section, we present common patterns to solve often-occurring problems, for instance regarding data modeling, in N3.

N-ary relations

Until now, we only considered binary relations between entities and/or values. But, many types of relations are ternary, quaternary, or, in general, n-ary in nature, i.e., they have an arbitrary number of participants. Typical examples are purchase, employment or membership relations.

In other cases, we want to describe properties of relations — such as the provenance of a piece of information, or the probability of a diagnosis. But, in essence, this is the same problem as representing n-ary relations.

There are several ways of representing n-ary relations in RDF — these are described in swbp-n-aryRelations.

Below, we illustrate options for representing n-ary relations in N3 in particular.

Using sets of binary relations

In general, it is possible to convert any n-ary relation into an equivalent set of binary relations. This is a convenient solution, since we already know how to represent binary relations.

First, we create a resource that represents the n-ary relation, and then use a set of binary relations to link each participant to this newly minted resource. Each binary relation is hereby given a meaningful name that represents the role of the participant in the n-ary relation.

For instance, say we want to describe the Purchase relation between a buyer called "John", a purchased book called "Lenny the Lion", the amount paid for the book, and the seller:

Either you could mint a new IRI for representing the n-ary relation, or simply use a blank node. In case other parties may want to refer to the n-ary relation from outside the N3 graph, one could choose to mint a new IRI.

In other cases, things are more naturally described as properties of relations, rather than n-ary relations — for instance, the provenance of a piece of information, the trend of someone's body temperature and when the temperature was taken. Nevertheless, these can be represented in the same way as n-ary relation participants.

We start from the same solution above, i.e., introducing a resource to represent the (in this case, binary) relation, and then linking the two participants to this resource. Subsequently, we use a set of binary relations to attach each descriptive property (e.g., diagnosis probability; temperature trend) to the relation resource.

For instance, when describing someone's (e.g., Christine) current temperature, you may want to indicate the absolute value (e.g., 40 degrees), a description of that value (e.g., elevated), the trend compared to the prior value (e.g., rising), and the time the temperature was taken:

This is possible since we know that the relation resource (e.g., _:to1) represents the n-ary relation. Hence, any descriptive properties of the relation, in addition to participants in the relation, can simply be attached to the entity.

In this example, we made a statement with one of the participants (:Christine) as subject, and the relation resource (_:to1) as object. An alternative would have been to add :Christine as just another element of the n-ary relation, e.g., using a property temperatureOf. Our modeling choice here aimed to indicate that Christine is somehow the "owner" of the relationship.

Using lists

An alternative solution is to use a list to keep all the participants of the n-ary relation. For instance:

A clear advantage of this approach is that it is easier and much less verbose to write down. However, the roles each participant play in the n-ary relation are no longer explicated. This is not a problem when the participants do not have different roles, as in the example above — they all play the same role of group member.

Compound literal

This solution is inspired by a separate discussion within the RDF community on Language Tagged Strings. The essence of the discussion is to separate the string, as a simple data, from its various characterizations, such as reading direction and language. This design pattern uses the rdf:CompoundLiteral class together with the rdf:language, rdf:direction, and rdf:value properties to respectively describe literal values on the base direction, language, and string value of the subject.

For more, see the "text direction" discussions in the RDF-star working group.

Graph terms

Graph terms allow attaching metadata to groups of triples, such as the provenance, context, version, opinion, probability, etc. See the example below:

Importantly, as discussed for graph terms in general, a graph term does not assert the contents of the RDF graph as being true. This allows expressing examples such as above, where the statement within the graph term should not be asserted.